

August 31, 2021

Mr. Chander Mohan Kochar Mr. Kuldip Kochar 34 S. Oyster Bay Road Syosset, New York 11791

Re: Limited Phase II Environmental Site Assessment

350 S. Broadway Hicksville, NY

Dear Mr. Kochar & Mr. Kochar,

EnviroTrac Ltd. (EnviroTrac) has prepared this letter report to document the results of the sanitary system sediment sampling event performed at 350 S. Broadway, Hicksville, NY (Site) on July 14 and July 19, 2021, in accordance with the Phase II cost proposals dated June 28 and July 15, 2021. The Site is currently vacant but was last occupied by Advantage Care Physicians. **Figure 1** is a topographic map showing the Site and features and **Figure 2** is an aerial photograph of the Site.

Background and Phase I Environmental Site Assessment

EnviroTrac conducted a Phase I Environmental Site Assessment (ESA) for the Site, dated June 28, 2021. The subject property was developed in 1956 with building expansions in 1970 and was reportedly occupied by multiple medical groups and physicians from 1972 to 2020.

Based on a property card maintained by Nassau County, the building was formerly heated with fuel oil. No information was available to determine if the former fuel oil tank at the Site was an above-ground storage tank (AST) or an underground storage tank (UST). A UST has the potential to corrode and leak; therefore, impacting the surrounding soil and/or groundwater at the Site. Since there was a potential that a former UST remained at the Site or was removed, but not investigated to determine if it had impacted the subsurface, this was considered a recognized environmental condition (REC).

The building was reported to have been previously connected to the municipal sewer system; however, during the site reconnaissance, several manhole covers were

observed to the north and south of the building that appeared to be apparent former onsite sanitary systems that would have previously received sanitary waste discharges from the building. Evidence that X-rays were previously developed within the Site building was also observed during the site reconnaissance. Previous X-ray development prior to the mid-2000s used hazardous chemicals. Hazardous wastes from X-ray development, likely containing heavy metals and volatile organic compounds, would then need to be stored on-site and then properly disposed by an approved waste hauler. Overtime, there is the potential that small amounts of these hazardous wastes could have been discharged or that an accidental release could have occurred impacting the on-site sanitary systems. This was also considered a REC.

Phase II Environmental Site Assessment – July 14 & 19, 2021

To address the above RECs, EnviroTrac conducted a Limited Phase II ESA at the Site on July 14 and 19, 2021. The Limited Phase II ESA included the following tasks:

- Conduct a geophysical survey at the Site to determine if any USTs were present or the locations of where former USTs were present, and the location of all former on-site sanitary systems at the Site;
- Should a UST be present or a former UST location be determined, Geoprobe soil borings would be advanced in these area(s) for collection of subsurface soil samples for laboratory analysis; and
- Collection of sediment samples from the primary pools associated with the former on-site sanitary systems for laboratory analysis.

Geophysical Survey - July 14, 2021

The geophysical survey included the use of ground penetrating radar (GPR), toning equipment, and a magnetometer. The results of the geophysical survey did not indicate any USTs or locations of former USTs that had been removed beneath the exterior areas of the Site. However, an apparent third on-site sanitary system was found to the southeast of the building and consisted of a septic tank and sanitary leaching pool.

Sanitary System Sediment Sampling – July 14 & July 19, 2021

Prior to the start of work on July 19, 2021, a previous Site plan was provided by the current building representatives which showed the former sanitary systems to the north and south of the building, stormwater drainage structures to the north and south of the building, and the municipal sewer connections for the building.

On July 14, 2021, EnviroTrac removed the manhole covers from the primary leaching pools associated with the former sanitary systems to the north and south of the building. It was observed that the leaching pools had been abandoned by filling them with compacted sand to just below the covers. Therefore, sediment samples could not be collected from the primary leaching pools using a hand auger.

Also on July 14, 2021, EnviroTrac removed the manhole covers from the septic tank associated with the sanitary system to the southeast of the building. The septic tank was almost filled with liquids and sludge and appeared to remain active. This was confirmed by turning the faucets on within the eastern portion of the building and observing water coming into the septic tank. The sanitary leaching pool associated with the southeastern septic tank was not accessible at grade at this time, and, therefore, could not be sampled.

On July 19, 2021, Associated Environmental Services, Inc. (Associated), under the direction of EnviroTrac, operated a Geoprobe drill rig to collect sediment samples from the primary leaching pools associated with the former on-site sanitary systems to the north and south of the building. Continuous soil cores were collected from the top of the primary leaching pools to a maximum of 30 feet below the top of the cover for the northern sanitary system and to a maximum of 27 feet below the top of the cover for the southern sanitary system. Clean sand was present from the top of the cover to approximately 18 feet below grade in the northern sanitary system and from the top of the cover to approximately 23 feet below grade in the southern sanitary system. Native sediment consisting of sand, silt, and gravel, was present beneath the clean sand. No stains or petroleum or chemical odors were noted.

Also on July 19, 2021, the grass and topsoil were removed from on top of the sanitary pool associated with the active on-site sanitary system to the southeast of the building. The manhole cover was removed from this sanitary pool and it was observed to not have been abandoned (filled in with sand). A pipe was observed leading from the septic tank into the leaching pool. No other pipes were observed within the leaching pool. A sediment sample was collected from the sanitary pool to the southeast using a hand auger. Native sediment consisted of sand, silt, and gravel. No stains or petroleum or chemical odors were noted. **Figure 3** shows the sampling locations.

Sediment samples were collected from 18 to 21, 23 to 35, and 28 to 30 feet below the top of the cover in the northern sanitary system, from 23 to 25 and 25 to 27 feet below the top of the cover in the southern sanitary system, and from 23 to 25 feet in the southeastern sanitary system. Sediment samples were collected into laboratory-supplied glassware, placed into an ice-filled cooler, and delivered via courier to Phoenix Environmental Laboratories, Inc. (Phoenix) in Manchester, CT, a New York State Department of Health (NYSDOH)-certified laboratory for analysis of volatile organic compounds (VOCs) via Method 8260, semi-volatile organic compounds (SVOCs) Base Neutrals List via Method 8270, and Resource Conservation and Recovery Act (RCRA) metals. A chain of custody form was completed to document sample possession. Only the sediment samples collected from the upper sample interval within each sanitary system were laboratory analyzed and the remaining samples were held at the laboratory for potential analysis.

Laboratory Results

Table 1 summarizes the primary sanitary pool sediment sampling results. A copy of the laboratory report is provided as **Attachment A**. The sediment sample results indicate that acetone was present in the north primary sanitary pool from 18 to 21 feet below grade, but acetone is a known laboratory contaminant, and is not likely present in the sample. No other VOCs were detected in the north primary sanitary pool. No VOCs were detected in the southern or southeastern primary sanitary pools.

No SVOCs were detected in the northern, southern, or southeastern primary sanitary pools.

Select metals were detected in the northern, southern, and southeastern primary sanitary pools. The metals results were compared to the New York State Department of Environmental Conservation (NYSDEC) Protection of Groundwater Criteria. The concentration for silver slightly exceeded its NYSDEC Protection of Groundwater Criteria in the southern primary sanitary pool from 23 to 25 feet below grade. None of the other metals detected exceeded their respective NYSDEC Protection of Groundwater Criteria.

Conclusions and Professional Opinion

To address the two (2) identified RECs in the Phase I ESA, EnviroTrac conducted a Limited Phase II ESA on July 14 and 19, 2021 at the Site. The following summarizes the results of the Limited Phase II ESA:

- A geophysical survey was conducted to determine if a UST remained or was formerly located at the Site. The results of the geophysical survey showed that no apparent USTs or former USTs were present beneath the exterior portions of the Site. Based on the results of the geophysical survey, the REC associated with a potential UST at the Site has been resolved and no further action appears warranted;
- The results of the geophysical survey also indicated that a sanitary system was present to the southeast of the building. This sanitary system was accessed and inspected. The inspection showed that the southeastern sanitary system remains active. A sediment sample was collected from the sanitary pool associated with the southeastern sanitary system. The sediment sample results showed that select metals were detected, but at concentrations below their respective NYSDEC Protection of Groundwater Criteria. Based on the results of the Limited Phase II ESA, operating an active on-site sanitary system at the Site while other portions of the building are connected to the municipal sewer system, is out of compliance with the Nassau County Department of Health (NCDH) regulations; and
- The primary sanitary pools associated with the abandoned sanitary systems to

the north and south of the building were filled to below the top of the covers with sand. Sediment samples were collected from the native material below the clean sand using a Geoprobe drill rig. The sediment sample results showed select metals were detected. Most of the detected metals were below their respective NYSDEC Protection of Groundwater Criteria with the exception of silver in the southern primary sanitary pool. Based on discussions with the NCDH, all of the abandoned sanitary pools associated with both the northern and southern sanitary systems should be sampled. Based on the results of the Limited Phase II ESA, the abandoned southern sanitary system remains a REC and additional sediment samples should be collected from all secondary sanitary pools. Please note that not all secondary pools associated with the northern sanitary system appeared to be accessible at grade.

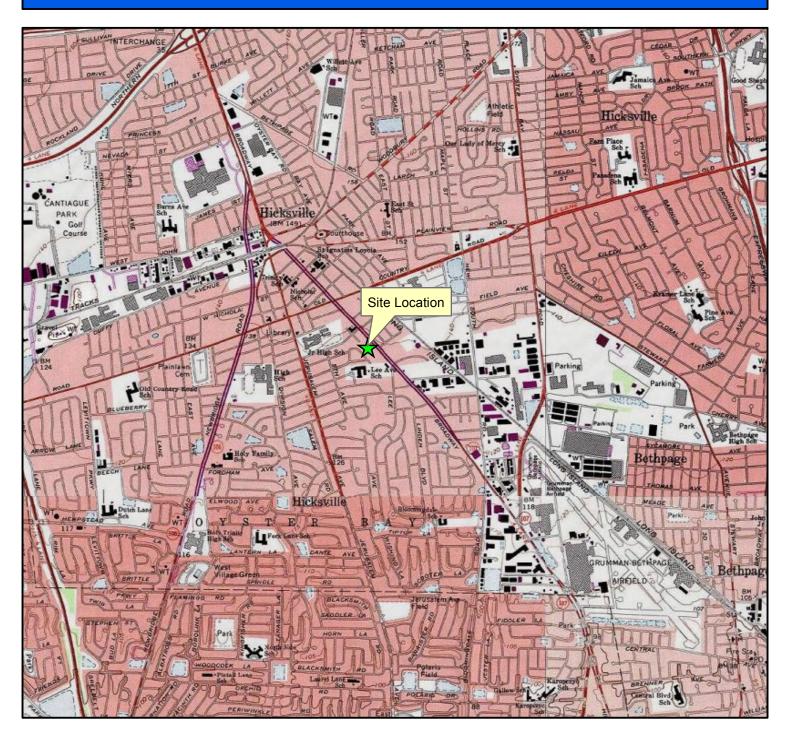
Based on the results of the Limited Phase II ESA, EnviroTrac recommends the following:

- The plumbing fixtures that currently discharge to the southeastern on-site sanitary system should be connected to the municipal sewer system, and the southeastern on-site sanitary system should be properly abandoned according to Nassau County and US Environmental Protection Agency (EPA) regulations. According to a Site plan provided to EnviroTrac, the building was already connected to the municipal sewer system when the northern and southern sanitary systems were abandoned;
- As per the NCDH, sediment samples should be collected from the secondary sanitary pools associated with the abandoned northern and southern sanitary systems for laboratory analysis of VOCs, SVOCs, and RCRA metals. Since some of the secondary pools associated with the northern sanitary system are not accessible at grade, the pavement above them should be removed to access the manhole covers;
- Based on the results of the previous sediment sampling and future sediment sampling, all impacted sanitary pools should be remediated under the direction of the NCDH and the US EPA.

Please do not hesitate to contact me if you have any questions.

Sincerely.

EnviroTrac Ltd.

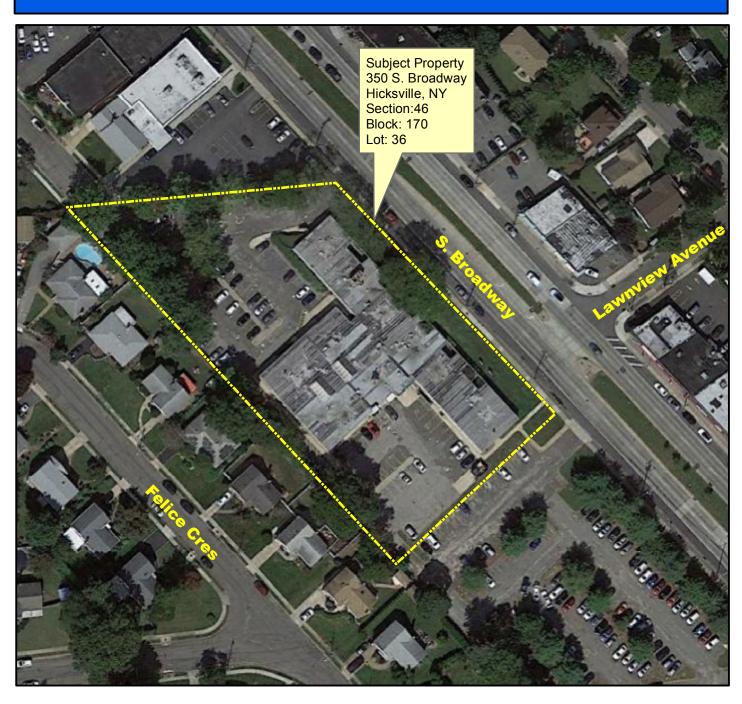

Tracy Wall, PG Project Manager enclosures

FIGURES

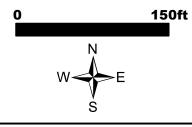
TOPOGRAPHIC MAP

Figure 1 Topographic Map

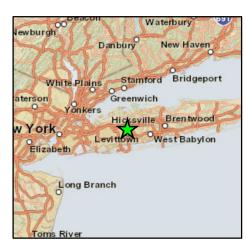
350 South Broadway Hicksville, NY 11801

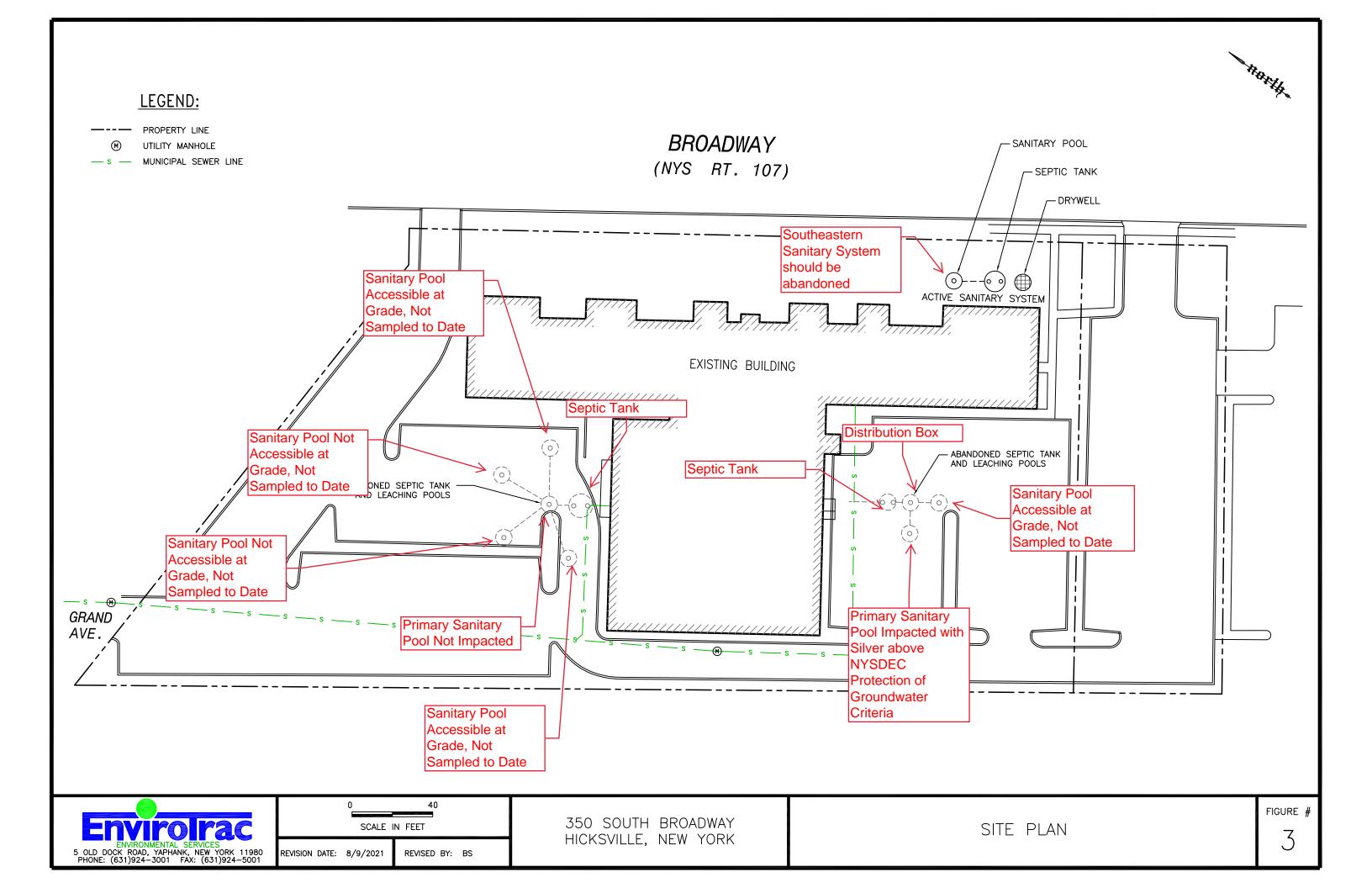

USGS Quadrangle: Hicksville

Approx. Elevation: 140 feet



AERIAL PHOTOGRAPH




Figure 2 Aerial Photograph

350 South Broadway Hicksville, NY 11801

TABLE

Table 1

Summary of Analytical Results For Sediment Sampling

350 S. Broadway Hicksville, New York

Analytical	North	South	Southeastern Pool	NYSDEC								
Parameter	18'-21'	23'-25'	23'-25'	Protection of Groundwater								
	7/19/2021	7/19/2021	7/19/2021	Criteria								
		VOCs (u	ıg/kg)									
Acetone	92 S	ND	ND	50								
SVOCs (ug/kg)												
SVOCs	ND	ND	ND	-								
		Metals (r	ng/kg)									
Arsenic	ND	1.88	ND	16								
Barium	8.82	30.5	10.9	820								
Chromium	6.3	6.39	3.78	19								
Lead	5.3	2.31	9.32	450								
Mercury	ND	0.07	0.43	0.73								
Silver	ND	9.51	ND	8								

Notes:

- 1. Only detected analytes are reported.
- 2. VOC and SVOC Concentration Units = ug/kg (micrograms per kilogram).
- 3. Metals Concentration Units = mg/kg (milligrams per kilogram).
- 4. Laboratory analysis via EPA Method 8260 and 8270 (Full List VOCs and CP-51 List SVOCs) and EPA Methods SW6010D, SW7471B for Resource Conservation and Recover Act (RCRA) Metals .

Environmental Services

- 5. ND = Not detected above the method detection limit of the laboratory.
- 6. VOCs = Volatile Organic Compounds
- 7. SVOCs = Semi Volatile Organic Compounds
- 8. S = Laboratory solvent, contamination is possible.
- 9. Bold values indicate an exceedance of the New York State Department of Environmental Conservation (NYSDEC) Protection
- of Groundwater Criteria.

ATTACHMENT A

Laboratory Report

Wednesday, July 28, 2021

Attn: Tracy Wall EnviroTrac 5 Old Dock Rd Yaphank, NY 11980

Project ID: 350 S BROADWAY HICKSVILLE NY

SDG ID: GCI77899

Sample ID#s: CI77899, CI77902, CI77904

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

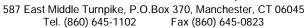
PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823


SDG Comments

July 28, 2021

SDG I.D.: GCI77899

CI77904 - Client provided soil jar for volatile analysis. Phoenix prepared sample per method 5035.

Sample Id Cross Reference

July 28, 2021

SDG I.D.: GCI77899

Project ID: 350 S BROADWAY HICKSVILLE NY

Client Id	Lab Id	Matrix
NORTH 18-21	CI77899	SOIL
SOUTH 23-25	CI77902	SOIL
EAST CESSPOOL	CI77904	SOIL

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 28, 2021

FOR: Attn: Tracy Wall EnviroTrac 5 Old Dock Rd

Yaphank, NY 11980

Sample Information Custody Information Time Date

SOIL Collected by: 07/19/21 Matrix:

Received by: Location Code: **ENVIROTR** В 07/20/21 15:19

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data SDG ID: GCI77899

Phoenix ID: CI77899

350 S BROADWAY HICKSVILLE NY Project ID:

Client ID: NORTH 18-21

_		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Arsenic	< 0.66	0.66	mg/Kg	1	07/26/21	TH	SW6010D	
Barium	8.82	0.33	mg/Kg	1	07/26/21	TH	SW6010D	
Cadmium	< 0.33	0.33	mg/Kg	1	07/26/21	TH	SW6010D	
Chromium	6.30	0.33	mg/Kg	1	07/26/21	TH	SW6010D	
Lead	5.30	0.33	mg/Kg	1	07/26/21	TH	SW6010D	
Mercury	< 0.03	0.03	mg/Kg	2	07/23/21	AT	SW7471B	
Selenium	< 1.3	1.3	mg/Kg	1	07/26/21	TH	SW6010D	
Silver	< 0.33	0.33	mg/Kg	1	07/26/21	TH	SW6010D	
Percent Solid	97		%		07/20/21	AR	SW846-%Solid	
Field Extraction	Completed				07/19/21		SW5035A	1
Mercury Digestion	Completed				07/23/21	CG/AB/A	ABSW7471B	
Soil Extraction for SVOA	Completed				07/20/21	R/Z	SW3546	
Total Metals Digest	Completed				07/20/21	CC/AG/	C SW3050B	
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1,1-Trichloroethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1,2-Trichloroethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1-Dichloroethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1-Dichloroethene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1-Dichloropropene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2,3-Trichloropropane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2,4-Trimethylbenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C	

Client ID: NORTH 18-21

311011C1D. 1401C111 10 Z	•	RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dibromoethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dichloroethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dichloropropane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
1,3-Dichloropropane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
2,2-Dichloropropane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
2-Chlorotoluene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
2-Hexanone	ND	24	ug/Kg	1	07/22/21	JLI	SW8260C
2-Isopropyltoluene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C 1
4-Chlorotoluene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
4-Methyl-2-pentanone	ND	24	ug/Kg	1	07/22/21	JLI	SW8260C
Acetone	92	S 24	ug/Kg	1	07/22/21	JLI	SW8260C
Acrylonitrile	ND	9.7	ug/Kg	1	07/22/21	JLI	SW8260C
Benzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Bromobenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Bromochloromethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Bromodichloromethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Bromoform	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Bromomethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Carbon Disulfide	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Carbon tetrachloride	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Chlorobenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Chloroethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Chloroform	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Chloromethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Dibromochloromethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Dibromomethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Dichlorodifluoromethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Ethylbenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Hexachlorobutadiene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Isopropylbenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
m&p-Xylene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Methyl Ethyl Ketone	ND	24	ug/Kg	1	07/22/21	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.7	ug/Kg	1	07/22/21	JLI	SW8260C
Methylene chloride	ND	9.7	ug/Kg	1	07/22/21	JLI	SW8260C
Naphthalene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
•	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
n-Butylbenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
n-Propylbenzene	ND	4.8	ug/Kg ug/Kg	1	07/22/21	JLI	SW8260C
o-Xylene							
p-Isopropyltoluene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
sec-Butylbenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Styrene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
tert-Butylbenzene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Tetrachloroethene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C

Phoenix I.D.: CI77899

Project ID: 350 S BROADWAY HICKSVILLE NY Phoenix I.D.: CI77899

Client ID: NORTH 18-21

	-	RL/		5	D . (T)	_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Tetrahydrofuran (THF)	ND	9.7	ug/Kg	1	07/22/21	JLI	SW8260C
Toluene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Total Xylenes	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.7	ug/Kg	1	07/22/21	JLI	SW8260C
Trichloroethene	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Trichlorofluoromethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
Vinyl chloride	ND	4.8	ug/Kg	1	07/22/21	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	101		%	1	07/22/21	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	07/22/21	JLI	70 - 130 %
% Dibromofluoromethane	99		%	1	07/22/21	JLI	70 - 130 %
% Toluene-d8	98		%	1	07/22/21	JLI	70 - 130 %
• • • • • • • • • • • • • • • • • • • •							
<u>Semivolatiles</u>							
1,2-Dichlorobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
1,2-Diphenylhydrazine	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
1,3-Dichlorobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
1,4-Dichlorobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
2,4-Dinitrotoluene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
2,6-Dinitrotoluene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
2-Chloronaphthalene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
2-Methylnaphthalene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
2-Nitroaniline	ND	990	ug/Kg	1	07/21/21	WB	SW8270D
3,3'-Dichlorobenzidine	ND	1400	ug/Kg	1	07/21/21	WB	SW8270D
3-Nitroaniline	ND	990	ug/Kg	1	07/21/21	WB	SW8270D
4-Bromophenyl phenyl ether	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
4-Chloroaniline	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
4-Chlorophenyl phenyl ether	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
4-Nitroaniline	ND	990	ug/Kg	1	07/21/21	WB	SW8270D
Acenaphthene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Acenaphthylene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Anthracene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benz(a)anthracene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzidine	ND	340	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(a)pyrene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(b)fluoranthene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(ghi)perylene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(k)fluoranthene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzoic acid	ND	680	ug/Kg	1	07/21/21	WB	SW8270D
Benzyl alcohol	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzyl butyl phthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Bis(2-chloroethoxy)methane	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Bis(2-chloroethyl)ether	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Bis(2-chloroisopropyl)ether	ND	240	ug/Kg	1	07/21/21	WB	SW8270D 1
Bis(2-ethylhexyl)phthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Chrysene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
on_(a,n,andinacono		= . •	~5′''8	•			

Project ID: 350 S BROADWAY HICKSVILLE NY

Client ID: NORTH 18-21

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Dibenzofuran	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Diethyl phthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Dimethylphthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Di-n-butylphthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Di-n-octylphthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Fluoranthene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Fluorene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Hexachlorobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Hexachlorobutadiene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Hexachlorocyclopentadiene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Hexachloroethane	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Isophorone	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Naphthalene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Nitrobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
N-Nitrosodimethylamine	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
N-Nitrosodi-n-propylamine	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
N-Nitrosodiphenylamine	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Phenanthrene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Pyrene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	73		%	1	07/21/21	WB	30 - 130 %
% Nitrobenzene-d5	84		%	1	07/21/21	WB	30 - 130 %
% Terphenyl-d14	77		%	1	07/21/21	WB	30 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

S - Laboratory solvent, contamination is possible.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 28, 2021

Reviewed and Released by: Rashmi Makol, Project Manager

Phoenix I.D.: CI77899

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 28, 2021

FOR: Attn: Tracy Wall
EnviroTrac
5 Old Dock Rd

Yaphank, NY 11980

<u>Sample Information</u> <u>Date</u> <u>Time</u>

Matrix: SOIL Collected by: 07/19/21

Location Code: ENVIROTR Received by: B 07/20/21 15:19

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GCI77899

Phoenix ID: CI77902

Project ID: 350 S BROADWAY HICKSVILLE NY

Client ID: SOUTH 23-25

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
Arsenic	1.88	0.67	mg/Kg	1	07/26/21	TH	SW6010D	
Barium	30.5	0.33	mg/Kg	1	07/26/21	TH	SW6010D	
Cadmium	< 0.33	0.33	mg/Kg	1	07/26/21	TH	SW6010D	
Chromium	6.39	0.33	mg/Kg	1	07/26/21	TH	SW6010D	
Lead	2.31	0.33	mg/Kg	1	07/26/21	TH	SW6010D	
Mercury	0.07	0.02	mg/Kg	2	07/23/21	AT	SW7471B	
Selenium	< 1.3	1.3	mg/Kg	1	07/26/21	TH	SW6010D	
Silver	9.51	0.33	mg/Kg	1	07/26/21	EK	SW6010D	
Percent Solid	97		%		07/20/21	AR	SW846-%Solid	
Field Extraction	Completed				07/19/21		SW5035A	1
Mercury Digestion	Completed				07/23/21	CG/AB/A	ABSW7471B	
Soil Extraction for SVOA	Completed				07/20/21	R/Z	SW3546	
Total Metals Digest	Completed				07/20/21	CC/AG/	c SW3050B	
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1,1-Trichloroethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1,2,2-Tetrachloroethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1,2-Trichloroethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1-Dichloroethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1-Dichloroethene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,1-Dichloropropene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2,3-Trichlorobenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2,3-Trichloropropane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2,4-Trichlorobenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2,4-Trimethylbenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	
1,2-Dibromo-3-chloropropane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C	

Client ID: SOUTH 23-25

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dibromoethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dichlorobenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dichloroethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dichloropropane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
1,3-Dichlorobenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
1,3-Dichloropropane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
1,4-Dichlorobenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
2,2-Dichloropropane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
2-Chlorotoluene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
2-Hexanone	ND	23	ug/Kg	1	07/22/21	JLI	SW8260C
2-Isopropyltoluene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C 1
4-Chlorotoluene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
4-Methyl-2-pentanone	ND	23	ug/Kg	1	07/22/21	JLI	SW8260C
Acetone	ND	23	ug/Kg	1	07/22/21	JLI	SW8260C
Acrylonitrile	ND	9.3	ug/Kg	1	07/22/21	JLI	SW8260C
Benzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Bromobenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Bromochloromethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Bromodichloromethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Bromoform	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Bromomethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Carbon Disulfide	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Carbon tetrachloride	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Chlorobenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Chloroethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Chloroform	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Chloromethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
cis-1,2-Dichloroethene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
cis-1,3-Dichloropropene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Dibromochloromethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Dibromomethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Dichlorodifluoromethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Ethylbenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Hexachlorobutadiene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Isopropylbenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
m&p-Xylene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Methyl Ethyl Ketone	ND	23	ug/Kg	1	07/22/21	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	9.3	ug/Kg	1	07/22/21	JLI	SW8260C
Methylene chloride	ND	9.3	ug/Kg	1	07/22/21	JLI	SW8260C
Naphthalene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
n-Butylbenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
n-Propylbenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
o-Xylene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
p-Isopropyltoluene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
sec-Butylbenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Styrene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
tert-Butylbenzene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Tetrachloroethene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C

Phoenix I.D.: CI77902

Project ID: 350 S BROADWAY HICKSVILLE NY Phoenix I.D.: CI77902

Client ID: SOUTH 23-25

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Tetrahydrofuran (THF)	ND	9.3	ug/Kg	1	07/22/21	JLI	SW8260C
Toluene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Total Xylenes	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
trans-1,2-Dichloroethene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
trans-1,3-Dichloropropene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	9.3	ug/Kg	1	07/22/21	JLI	SW8260C
Trichloroethene	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Trichlorofluoromethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Trichlorotrifluoroethane	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
Vinyl chloride	ND	4.6	ug/Kg	1	07/22/21	JLI	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	07/22/21	JLI	70 - 130 %
% Bromofluorobenzene	98		%	1	07/22/21	JLI	70 - 130 %
% Dibromofluoromethane	99		%	1	07/22/21	JLI	70 - 130 %
% Toluene-d8	98		%	1	07/22/21	JLI	70 - 130 %
<u>Semivolatiles</u>							
1,2-Dichlorobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
1,2-Diphenylhydrazine	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
1,3-Dichlorobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
1,4-Dichlorobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
2,4-Dinitrotoluene	ND	240	ug/Kg ug/Kg	1	07/21/21	WB	SW8270D
2,6-Dinitrotoluene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
2-Chloronaphthalene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
-	ND	240	ug/Kg ug/Kg	1	07/21/21	WB	SW8270D SW8270D
2-Methylnaphthalene	ND	1000	ug/Kg ug/Kg	1	07/21/21	WB	SW8270D
2-Nitroaniline	ND	1400	ug/Kg ug/Kg	1	07/21/21	WB	SW8270D
3,3'-Dichlorobenzidine	ND	1000		•	07/21/21	WB	SW8270D
3-Nitroaniline			ug/Kg	1		WB	
4-Bromophenyl phenyl ether	ND	240	ug/Kg	1	07/21/21 07/21/21		SW8270D
4-Chloroaniline	ND	240	ug/Kg	1		WB	SW8270D SW8270D
4-Chlorophenyl phenyl ether	ND	240	ug/Kg	1	07/21/21	WB	
4-Nitroaniline	ND	1000	ug/Kg	1	07/21/21	WB	SW8270D
Acenaphthene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Acenaphthylene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Anthracene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benz(a)anthracene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzidine	ND	340	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(a)pyrene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(b)fluoranthene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(ghi)perylene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(k)fluoranthene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzoic acid	ND	690	ug/Kg	1	07/21/21	WB	SW8270D
Benzyl alcohol	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Benzyl butyl phthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Bis(2-chloroethoxy)methane	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Bis(2-chloroethyl)ether	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Bis(2-chloroisopropyl)ether	ND	240	ug/Kg	1	07/21/21	WB	SW8270D 1
Bis(2-ethylhexyl)phthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Chrysene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D

Project ID: 350 S BROADWAY HICKSVILLE NY

Client ID: SOUTH 23-25

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Dibenzofuran	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Diethyl phthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Dimethylphthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Di-n-butylphthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Di-n-octylphthalate	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Fluoranthene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Fluorene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Hexachlorobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Hexachlorobutadiene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Hexachlorocyclopentadiene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Hexachloroethane	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Isophorone	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Naphthalene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Nitrobenzene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
N-Nitrosodimethylamine	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
N-Nitrosodi-n-propylamine	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
N-Nitrosodiphenylamine	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Phenanthrene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
Pyrene	ND	240	ug/Kg	1	07/21/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	87		%	1	07/21/21	WB	30 - 130 %
% Nitrobenzene-d5	100		%	1	07/21/21	WB	30 - 130 %
% Terphenyl-d14	91		%	1	07/21/21	WB	30 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 28, 2021

Reviewed and Released by: Rashmi Makol, Project Manager

Phoenix I.D.: CI77902

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 28, 2021

FOR: Attn: Tracy Wall

EnviroTrac 5 Old Dock Rd Yaphank, NY 11980

Matrix: SOIL Collected by: 07/19/21

Location Code: ENVIROTR Received by: B 07/20/21 15:19

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

<u>Laboratory Data</u>

SDG ID: GCI77899 Phoenix ID: CI77904

Project ID: 350 S BROADWAY HICKSVILLE NY

Client ID: EAST CESSPOOL

Parameter	Result		RL/ PQL	Į	Units	Dilution	Date/Time	Ву	Reference
Arsenic	< 0.79		0.79	r	mg/Kg	1	07/26/21	TH	SW6010D
Barium	10.9		0.40	r	mg/Kg	1	07/26/21	TH	SW6010D
Cadmium	< 0.40		0.40	r	mg/Kg	1	07/26/21	TH	SW6010D
Chromium	3.78		0.40	r	mg/Kg	1	07/26/21	TH	SW6010D
Lead	9.32		0.40	r	mg/Kg	1	07/26/21	TH	SW6010D
Mercury	0.43		0.03	r	mg/Kg	2	07/23/21	AT	SW7471B
Selenium	< 1.6		1.6	r	mg/Kg	1	07/26/21	TH	SW6010D
Silver	< 0.40		0.40	r	mg/Kg	1	07/26/21	TH	SW6010D
Percent Solid	83				%		07/20/21	AR	SW846-%Solid
Mercury Digestion	Completed	b					07/23/21	CG/AB/A	BSW7471B
Soil Extraction for SVOA	Completed	b					07/20/21	R/Z	SW3546
Total Metals Digest	Completed	b					07/20/21	CC/AG/	C SW3050B
<u>Volatiles</u>									
1,1,1,2-Tetrachloroethane	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,1,1-Trichloroethane	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,1,2-Trichloroethane	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,1-Dichloroethane	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,1-Dichloroethene	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,1-Dichloropropene	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,2,3-Trichloropropane	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	L	6.1	ı	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dibromoethane	ND	L	6.1	•	ug/Kg	1	07/22/21	JLI	SW8260C

Client ID: EAST CESSPOOL

Parameter	Result		RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichlorobenzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dichloroethane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
1,2-Dichloropropane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
1,3-Dichlorobenzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
1,3-Dichloropropane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
1,4-Dichlorobenzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
2,2-Dichloropropane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
2-Chlorotoluene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
2-Hexanone	ND	L	30	ug/Kg	1	07/22/21	JLI	SW8260C
2-Isopropyltoluene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
4-Chlorotoluene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
4-Methyl-2-pentanone	ND	L	30	ug/Kg	1	07/22/21	JLI	SW8260C
Acetone	ND	L	30	ug/Kg	1	07/22/21	JLI	SW8260C
Acrylonitrile	ND	L	12	ug/Kg	1	07/22/21	JLI	SW8260C
Benzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Bromobenzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Bromochloromethane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Bromodichloromethane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Bromoform	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Bromomethane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Carbon Disulfide	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Carbon tetrachloride	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Chlorobenzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Chloroethane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Chloroform	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Chloromethane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
cis-1,2-Dichloroethene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
cis-1,3-Dichloropropene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Dibromochloromethane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Dibromomethane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Dichlorodifluoromethane	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Ethylbenzene	ND	ī	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Hexachlorobutadiene	ND	ī	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Isopropylbenzene	ND	ī	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
m&p-Xylene	ND	-	30	ug/Kg	1	07/22/21	JLI	SW8260C
Methyl Ethyl Ketone	ND	L	12	ug/Kg ug/Kg	1	07/22/21	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	L	12		1	07/22/21	JLI	SW8260C
Methylene chloride	ND ND		6.1	ug/Kg		07/22/21	JLI	SW8260C SW8260C
Naphthalene		L		ug/Kg	1			
n-Butylbenzene	ND	-	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
n-Propylbenzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
o-Xylene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
p-Isopropyltoluene	ND	L		ug/Kg	1	07/22/21	JLI	SW8260C
sec-Butylbenzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI 	SW8260C
Styrene	ND	L	6.1	ug/Kg	1	07/22/21	JLI 	SW8260C
tert-Butylbenzene	ND	L	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Tetrachloroethene	ND	L	6.1	ug/Kg ug/Kg	1	07/22/21	JLI JLI	SW8260C
Tetrahydrofuran (THF)	ND	L	12		1	07/22/21		SW8260C

Phoenix I.D.: CI77904

Project ID: 350 S BROADWAY HICKSVILLE NY Phoenix I.D.: CI77904

Client ID: EAST CESSPOOL

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Toluene	ND	L 6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Total Xylenes	ND	6.1	ug/Kg	1	07/22/21	JLI	SW8260C
trans-1,2-Dichloroethene	ND	L 6.1	ug/Kg	1	07/22/21	JLI	SW8260C
trans-1,3-Dichloropropene	ND	L 6.1	ug/Kg	1	07/22/21	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	L 12	ug/Kg	1	07/22/21	JLI	SW8260C
Trichloroethene	ND	L 6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Trichlorofluoromethane	ND	L 6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Trichlorotrifluoroethane	ND	L 6.1	ug/Kg	1	07/22/21	JLI	SW8260C
Vinyl chloride	ND	L 6.1	ug/Kg	1	07/22/21	JLI	SW8260C
QA/QC Surrogates			~g/ · ·g	•	01/==/= 1	0	01102000
% 1,2-dichlorobenzene-d4	100		%	1	07/22/21	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	07/22/21	JLI	70 - 130 %
% Dibromofluoromethane	99		%	1	07/22/21	JLI	70 - 130 %
% Toluene-d8	98		%	1	07/22/21	JLI	70 - 130 %
70 Toldelle do			,,	•	01/==/= 1	0	
<u>Semivolatiles</u>							
1,2-Dichlorobenzene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
1,2-Diphenylhydrazine	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
1,3-Dichlorobenzene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
1,4-Dichlorobenzene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
2,4-Dinitrotoluene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
2,6-Dinitrotoluene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
2-Chloronaphthalene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
2-Methylnaphthalene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
2-Nitroaniline	ND	1700	ug/Kg	1	07/21/21	WB	SW8270D
3,3'-Dichlorobenzidine	ND	2300	ug/Kg	1	07/21/21	WB	SW8270D
3-Nitroaniline	ND	1700	ug/Kg	1	07/21/21	WB	SW8270D
4-Bromophenyl phenyl ether	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
4-Chloroaniline	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
4-Chlorophenyl phenyl ether	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
4-Nitroaniline	ND	1700	ug/Kg	1	07/21/21	WB	SW8270D
Acenaphthene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Acenaphthylene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Anthracene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Benz(a)anthracene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Benzidine	ND	580	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(a)pyrene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(b)fluoranthene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(ghi)perylene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Benzo(k)fluoranthene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Benzoic acid	ND	1200	ug/Kg	1	07/21/21	WB	SW8270D
Benzyl alcohol	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Benzyl butyl phthalate	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Bis(2-chloroethoxy)methane	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Bis(2-chloroethyl)ether	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Bis(2-chloroisopropyl)ether	ND	400	ug/Kg	1	07/21/21	WB	SW8270D 1
Bis(2-ethylhexyl)phthalate	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Chrysene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Dibenz(a,h)anthracene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Dibenzofuran	ND	400	ug/Kg	1	07/21/21	WB	SW8270D

Project ID: 350 S BROADWAY HICKSVILLE NY

Client ID: EAST CESSPOOL

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Diethyl phthalate	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Dimethylphthalate	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Di-n-butylphthalate	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Di-n-octylphthalate	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Fluoranthene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Fluorene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Hexachlorobenzene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Hexachlorobutadiene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Hexachlorocyclopentadiene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Hexachloroethane	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Isophorone	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Naphthalene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Nitrobenzene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
N-Nitrosodimethylamine	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
N-Nitrosodi-n-propylamine	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
N-Nitrosodiphenylamine	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Phenanthrene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
Pyrene	ND	400	ug/Kg	1	07/21/21	WB	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	85		%	1	07/21/21	WB	30 - 130 %
% Nitrobenzene-d5	94		%	1	07/21/21	WB	30 - 130 %
% Terphenyl-d14	91		%	1	07/21/21	WB	30 - 130 %

^{1 =} This parameter is not certified by the primary accrediting authority (NY NELAC) for this matrix. NY NELAC does not offer certification for all parameters at this time.

RL/PQL=Reporting/Practical Quantitation Level (Equivalent to NELAC LOQ, Limit of Quantitation) ND=Not Detected at RL/PQL BRL=Below Reporting Level L=Biased Low

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

L flag signifies that this sample was not collected in accordance with EPA method 5035. NELAC requires the laboratory to qualify the volatile soil data as biased low.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 28, 2021

Reviewed and Released by: Rashmi Makol, Project Manager

Phoenix I.D.: CI77904

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

%

QA/QC Report

July 28, 2021

QA/QC Data

QA/QC Data	SDG I.D.:	GCI77899

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits	
QA/QC Batch 584730 (mg/kg),	QC Sam	nple No:	CI77580	(CI7789	99, CI7	7902, C	177904)							
Mercury - Soil	BRL	0.02	< 0.03	< 0.03	NC	128	117	9.0	65.7	73.1	10.7	70 - 130	30	m
Comment:														
Additional Mercury criteria: LCS a	acceptanc	e range f	or waters	is 80-120	% and fo	or soils is	s 70-130 ⁹	%. MS a	cceptan	ce range	is 75-1	25%.		
QA/QC Batch 584247 (mg/kg),	QC Sam	ple No:	CI77596	(CI7789	99, CI7	7902, C	177904)							
ICP Metals - Soil														
Arsenic	BRL	0.67	1.23	2.14	NC	121	109	10.4	94.5			75 - 125	35	
Barium	BRL	0.33	20.0	35.4	55.6	117	105	10.8	109			75 - 125	35	r
Cadmium	BRL	0.33	< 0.35	0.43	NC	107	109	1.9	93.4			75 - 125	35	
Chromium	BRL	0.33	8.08	15.2	61.2	114	108	5.4	98.7			75 - 125	35	r
Lead	BRL	0.33	16.1	52.7	106	118	105	11.7	104			75 - 125	35	r
Selenium	BRL	1.3	<1.4	<1.3	NC	109	105	3.7	92.7			75 - 125	35	
Silver	BRL	0.33	< 0.35	< 0.33	NC	115	103	11.0	93.4			75 - 125	35	
Comment:														
Additional Criteria: LCS acceptan	ce range	is 80-120)% MS acc	ceptance	range 75	5-125%.								

m = This parameter is outside laboratory MS/MSD specified recovery limits. r = This parameter is outside laboratory RPD specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

QA/QC Data

July 28, 2021			QA/QC Da	<u>ata</u>				SDG I	.D.: 0	GC1778	99	
Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 584246 (ug/kg), QC Sam	ole No: CI778	362 (CI77899, CI779)	02, CI	77904)							
Semivolatiles - Soil												
1,2-Dichlorobenzene	ND	180		73	74	1.4	78	72	8.0	40 - 140	30	
1,2-Diphenylhydrazine	ND	230		75	80	6.5	84	78	7.4	40 - 140	30	
1,3-Dichlorobenzene	ND	230		70	71	1.4	75	69	8.3	40 - 140	30	
1,4-Dichlorobenzene	ND	230		72	74	2.7	79	71	10.7	40 - 140	30	
2,4-Dinitrotoluene	ND	130		99	105	5.9	110	102	7.5	30 - 130	30	
2,6-Dinitrotoluene	ND	130		95	102	7.1	106	98	7.8	40 - 140	30	
2-Chloronaphthalene	ND	230		82	86	4.8	91	85	6.8	40 - 140	30	
2-Methylnaphthalene	ND	230		76	78	2.6	84	79	6.1	40 - 140	30	
2-Nitroaniline	ND	330		103	110	6.6	103	102	1.0	40 - 140	30	
3,3'-Dichlorobenzidine	ND	130		102	103	1.0	89	89	0.0	40 - 140	30	
3-Nitroaniline	ND	330		105	106	0.9	109	111	1.8	40 - 140	30	
4-Bromophenyl phenyl ether	ND	230		88	90	2.2	95	89	6.5	40 - 140	30	
4-Chloroaniline	ND	230		69	72	4.3	73	81	10.4	40 - 140	30	
4-Chlorophenyl phenyl ether	ND	230		84	87	3.5	92	85	7.9	40 - 140	30	
4-Nitroaniline	ND	230		87	92	5.6	99	92	7.3	40 - 140	30	
Acenaphthene	ND	230		81	85	4.8	90	82	9.3	30 - 130	30	
Acenaphthylene	ND	130		79	82	3.7	87	80	8.4	40 - 140	30	
Anthracene	ND	230		82	85	3.6	90	84	6.9	40 - 140	30	
Benz(a)anthracene	ND	230		82	86	4.8	92	84	9.1	40 - 140	30	
Benzidine	ND	330		74	63	16.1	<10	<10	NC	40 - 140	30	m
Benzo(a)pyrene	ND	130		81	87	7.1	92	84	9.1	40 - 140	30	
Benzo(b)fluoranthene	ND	160		82	88	7.1	95	88	7.7	40 - 140	30	
Benzo(ghi)perylene	ND	230		85	89	4.6	95	86	9.9	40 - 140	30	
Benzo(k)fluoranthene	ND	230		84	88	4.7	91	84	8.0	40 - 140	30	
Benzoic Acid	ND	670		88	108	20.4	50	26	63.2	30 - 130	30	m,r
Benzyl Alcohol	ND	230		68	73	7.1	79	71	10.7	30 - 130	30	
Benzyl butyl phthalate	ND	230		90	93	3.3	98	93	5.2	40 - 140	30	
Bis(2-chloroethoxy)methane	ND	230		75	77	2.6	83	78	6.2	40 - 140	30	
Bis(2-chloroethyl)ether	ND	130		65	68	4.5	73	68	7.1	40 - 140	30	
Bis(2-chloroisopropyl)ether	ND	230		60	63	4.9	67	63	6.2	40 - 140	30	
Bis(2-ethylhexyl)phthalate	ND	230		88	89	1.1	95	89	6.5	40 - 140	30	
Chrysene	ND	230		83	87	4.7	92	85	7.9	40 - 140	30	
Dibenz(a,h)anthracene	ND	130		87	91	4.5	97	88	9.7	40 - 140	30	
Dibenzofuran	ND	230		80	84	4.9	89	81	9.4	40 - 140	30	
Diethyl phthalate	ND	230		78	81	3.8	85	80	6.1	40 - 140	30	
Dimethylphthalate	ND	230		84	88	4.7	92	86	6.7	40 - 140	30	
Di-n-butylphthalate	ND	670		85	86	1.2	91	85	6.8	40 - 140	30	
Di-n-octylphthalate	ND	230		80	82	2.5	87	83	4.7	40 - 140	30	
Fluoranthene	ND	230		84	87	3.5	97	86	12.0	40 - 140	30	
Fluorene	ND	230		82	86	4.8	91	85	6.8	40 - 140	30	
Hexachlorobenzene	ND	130		77	79	2.6	86	80	7.2	40 - 140	30	

QA/QC Data

SDG I.D.: GCI77899

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Hexachlorobutadiene	ND	230	79	77	2.6	85	79	7.3	40 - 140	30
Hexachlorocyclopentadiene	ND	230	76	77	1.3	86	78	9.8	40 - 140	30
Hexachloroethane	ND	130	74	73	1.4	79	72	9.3	40 - 140	30
Indeno(1,2,3-cd)pyrene	ND	230	88	91	3.4	100	89	11.6	40 - 140	30
Isophorone	ND	130	69	72	4.3	76	71	6.8	40 - 140	30
Naphthalene	ND	230	73	74	1.4	80	74	7.8	40 - 140	30
Nitrobenzene	ND	130	77	85	9.9	90	84	6.9	40 - 140	30
N-Nitrosodimethylamine	ND	230	67	70	4.4	72	67	7.2	40 - 140	30
N-Nitrosodi-n-propylamine	ND	130	71	76	6.8	82	75	8.9	40 - 140	30
N-Nitrosodiphenylamine	ND	130	80	86	7.2	85	79	7.3	40 - 140	30
Phenanthrene	ND	130	80	83	3.7	91	82	10.4	40 - 140	30
Pyrene	ND	230	87	87	0.0	97	87	10.9	30 - 130	30
% 2-Fluorobiphenyl	86	%	78	80	2.5	86	80	7.2	30 - 130	30
% Nitrobenzene-d5	92	%	78	84	7.4	90	85	5.7	30 - 130	30
% Terphenyl-d14	94	%	86	85	1.2	93	86	7.8	30 - 130	30
Comment:										

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 584621 (ug/kg), QC Sample No: CI77899 (CI77899, CI77902, CI77904)

Volatiles - Soil (Low Level)

Volatiles - Joli (Low Level)											
1,1,1,2-Tetrachloroethane	ND	5.0	95	91	4.3	91	82	10.4	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0	96	91	5.3	87	82	5.9	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0	93	89	4.4	100	81	21.0	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0	91	87	4.5	90	79	13.0	70 - 130	30	
1,1-Dichloroethane	ND	5.0	96	90	6.5	89	82	8.2	70 - 130	30	
1,1-Dichloroethene	ND	5.0	94	90	4.3	87	83	4.7	70 - 130	30	
1,1-Dichloropropene	ND	5.0	95	90	5.4	87	85	2.3	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0	93	87	6.7	69	48	35.9	70 - 130	30	m,r
1,2,3-Trichloropropane	ND	5.0	92	87	5.6	97	81	18.0	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0	95	87	8.8	68	51	28.6	70 - 130	30	m
1,2,4-Trimethylbenzene	ND	1.0	93	88	5.5	84	72	15.4	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	96	91	5.3	97	78	21.7	70 - 130	30	
1,2-Dibromoethane	ND	5.0	92	87	5.6	93	80	15.0	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	94	88	6.6	84	69	19.6	70 - 130	30	m
1,2-Dichloroethane	ND	5.0	93	88	5.5	90	80	11.8	70 - 130	30	
1,2-Dichloropropane	ND	5.0	96	91	5.3	94	85	10.1	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	95	90	5.4	87	75	14.8	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	93	88	5.5	82	69	17.2	70 - 130	30	m
1,3-Dichloropropane	ND	5.0	92	88	4.4	94	82	13.6	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	92	87	5.6	80	68	16.2	70 - 130	30	m
2,2-Dichloropropane	ND	5.0	96	92	4.3	85	80	6.1	70 - 130	30	
2-Chlorotoluene	ND	5.0	95	90	5.4	88	76	14.6	70 - 130	30	
2-Hexanone	ND	25	81	77	5.1	84	70	18.2	70 - 130	30	
2-Isopropyltoluene	ND	5.0	99	95	4.1	91	75	19.3	70 - 130	30	
4-Chlorotoluene	ND	5.0	92	88	4.4	84	73	14.0	70 - 130	30	
4-Methyl-2-pentanone	ND	25	92	87	5.6	98	82	17.8	70 - 130	30	
Acetone	ND	10	71	70	1.4	NC	NC	NC	70 - 130	30	
Acrylonitrile	ND	5.0	99	85	15.2	93	82	12.6	70 - 130	30	
Benzene	ND	1.0	95	91	4.3	90	84	6.9	70 - 130	30	
Bromobenzene	ND	5.0	95	90	5.4	91	78	15.4	70 - 130	30	
Bromochloromethane	ND	5.0	91	87	4.5	90	79	13.0	70 - 130	30	
Bromodichloromethane	ND	5.0	91	86	5.6	86	78	9.8	70 - 130	30	

QA/QC Data

SDG I.D.: GCI77899

Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Bromoform	ND	5.0	91	86	5.6	85	73	15.2	70 - 130	30	
Bromomethane	ND	5.0	90	86	4.5	91	86	5.6	70 - 130	30	
Carbon Disulfide	ND	5.0	103	98	5.0	90	87	3.4	70 - 130	30	
Carbon tetrachloride	ND	5.0	95	90	5.4	84	80	4.9	70 - 130	30	
Chlorobenzene	ND	5.0	94	89	5.5	88	80	9.5	70 - 130	30	
Chloroethane	ND	5.0	92	87	5.6	84	80	4.9	70 - 130	30	
Chloroform	ND	5.0	91	87	4.5	87	79	9.6	70 - 130	30	
Chloromethane	ND	5.0	89	83	7.0	84	79	6.1	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	95	87	8.8	90	82	9.3	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	95	90	5.4	90	80	11.8	70 - 130	30	
Dibromochloromethane	ND	3.0	95	90	5.4	90	79	13.0	70 - 130	30	
Dibromomethane	ND	5.0	89	84	5.8	87	77	12.2	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	90	87	3.4	83	82	1.2	70 - 130	30	
Ethylbenzene	ND	1.0	96	91	5.3	90	83	8.1	70 - 130	30	
Hexachlorobutadiene	ND	5.0	102	95	7.1	69	54	24.4	70 - 130	30	m
Isopropylbenzene	ND	1.0	97	93	4.2	93	82	12.6	70 - 130	30	
m&p-Xylene	ND	2.0	93	89	4.4	86	80	7.2	70 - 130	30	
Methyl ethyl ketone	ND	5.0	92	85	7.9	75	61	20.6	70 - 130	30	m
Methyl t-butyl ether (MTBE)	ND	1.0	92	87	5.6	90	78	14.3	70 - 130	30	
Methylene chloride	ND	5.0	80	76	5.1	76	68	11.1	70 - 130	30	m
Naphthalene	ND	5.0	94	90	4.3	83	62	29.0	70 - 130	30	m
n-Butylbenzene	ND	1.0	94	89	5.5	78	65	18.2	70 - 130	30	m
n-Propylbenzene	ND	1.0	95	91	4.3	88	77	13.3	70 - 130	30	
o-Xylene	ND	2.0	93	89	4.4	87	80	8.4	70 - 130	30	
p-Isopropyltoluene	ND	1.0	98	94	4.2	87	73	17.5	70 - 130	30	
sec-Butylbenzene	ND	1.0	107	102	4.8	98	83	16.6	70 - 130	30	
Styrene	ND	5.0	95	89	6.5	86	78	9.8	70 - 130	30	
tert-Butylbenzene	ND	1.0	95	91	4.3	89	76	15.8	70 - 130	30	
Tetrachloroethene	ND	5.0	96	91	5.3	85	82	3.6	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	93	88	5.5	91	74	20.6	70 - 130	30	
Toluene	ND	1.0	93	89	4.4	86	80	7.2	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	99	94	5.2	92	86	6.7	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	92	87	5.6	86	76	12.3	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	97	91	6.4	94	76	21.2	70 - 130	30	
Trichloroethene	ND	5.0	96	92	4.3	89	85	4.6	70 - 130	30	
Trichlorofluoromethane	ND	5.0	97	92	5.3	86	84	2.4	70 - 130	30	
Trichlorotrifluoroethane	ND	5.0	103	98	5.0	94	90	4.3	70 - 130	30	
Vinyl chloride	ND	5.0	95	90	5.4	88	85	3.5	70 - 130	30	
% 1,2-dichlorobenzene-d4	101	%	101	101	0.0	101	100	1.0	70 - 130	30	
% Bromofluorobenzene	98	%	100	98	2.0	97	99	2.0	70 - 130	30	
% Dibromofluoromethane	103	%	102	101	1.0	101	100	1.0	70 - 130	30	
% Toluene-d8	98	%	101	100	1.0	100	100	0.0	70 - 130	30	
Comment:											

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

m = This parameter is outside laboratory MS/MSD specified recovery limits. r = This parameter is outside laboratory RPD specified recovery limits.

QA/QC Data

SDG I.D.: GCI77899

% RPD Blk LCS LCSD LCS MS MSD MS Rec Blank RL % % RPD % % RPD Limits Limits Parameter

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

July 28, 2021

Wednesday, July 28, 2021

Sample Criteria Exceedances Report GCI77899 - ENVIROTR

Criteria: None State: NY

State: NY

RL Analysis
SampNo Acode Phoenix Analyte Criteria Units
Result RL Criteria Units

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

^{***} No Data to Display ***

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Comments

July 28, 2021 SDG I.D.: GCI77899

The following analysis comments are made regarding exceptions to criteria not already noted in the Analysis Report or QA/QC Report:

SVOA Narration

CHEM07 07/20/21-1: CI77899, CI77902, CI77904

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

The following Initial Calibration compounds did not meet recommended response factors: Hexachlorobenzene 0.072 (0.1)

The following Initial Calibration compounds did not meet minimum response factors: None.

The following Continuing Calibration compounds did not meet % deviation criteria: 2-Nitroaniline 40%L (30%)

The following Continuing Calibration compounds did not meet Maximum % deviation criteria: None.

The following Continuing Calibration compounds did not meet recommended response factors: Hexachlorobenzene 0.065 (0.1)

The following Continuing Calibration compounds did not meet minimum response factors: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

VOA Narration

CHEM26 07/21/21-2: CI77899, CI77902, CI77904

The following Initial Calibration compounds did not meet RSD% criteria: 2-Hexanone 21% (20%), Acetone 39% (20%), Methylene chloride 29% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

ACCA

NY Temperature Narration

July 28, 2021

SDG I.D.: GCI77899

The samples in this delivery group were received at 3.1° C. (Note acceptance criteria for relevant matrices is above freezing up to 6° C)

NY/NJ CHAIN OF CUSTODY RECORD	Temp 2 1 Pa 1 of
Data Delivery:	† - - -
Fax (860) 645-0823 50) 645-8726	Tracy WenviloTrac.Com
Customer: ENVICOTCAC, At Project: 350 5 B To adulay Hickswille, NY Project P.O: Report to: T. Wall Phone #: Phone #: Phone #:	
Sampler's Signature Signature Date: TH/21 Request Signature	11.000 1 10.000 1
	THOS THOSE
Customer Sample Bate Time Time Identification Matrix Sampled Sampled College C	PAROS PLONES TO SOLITORS TO SO
1/844 North 18-31 5 7/1951 XXX XXX 372 17600 North 22-35 1 272	
North 28-30	
South 25-27	
1969 East C4550col W X X X X X X X X X X X X X X X X X X	
Settinguished by: Accepted by: Date: Time: Turnaround: NJ NY NY NY NY NY NY NY	Data Format Phoenix Std Report
TIQOIQI ISIQ Days Impact to GW Soil Cleanup Criteria	
TH 23-25 + 28-30 FOR FUTURE	☐ EQuIS ☐ NJ Hazsite EDD ☐ NY EZ EDD (ASP) ☐ Other
HWALES SOUTH 25-27 FOR POSSIBLE FUTURE State where samples were collected: NY	Data Package NJ Reduced Deliv.* NY Enhanced (ASP B)*